This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/primality_test"
#include <bits/stdc++.h>
using namespace std;
#include "../../math/miller_rabin.hpp"
int main() {
int Q;
cin >> Q;
while(Q--) {
long long N;
cin >> N;
if(fast_factorize::is_prime(N)) cout << "Yes" << endl;
else cout << "No" << endl;
}
return 0;
}
#line 1 "verify/yosupo/yosupo_primality_test.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/primality_test"
#include <bits/stdc++.h>
using namespace std;
#line 1 "data_structure/montgomery_modint_64.hpp"
struct MontgomeryModint64 {
using mint = MontgomeryModint64;
using u64 = uint64_t;
using u128 = __uint128_t;
static inline u64 MOD;
static inline u64 INV_MOD; // INV_MOD * MOD ≡ 1 (mod 2 ^ 64)
static inline u64 T128; // 2 ^ 128 (mod MOD)
u64 val;
MontgomeryModint64(): val(0) {}
MontgomeryModint64(long long v): val(MR((u128(v) + MOD) * T128)) {}
u64 get() const {
u64 res = MR(val);
return res >= MOD ? res - MOD : res;
}
static u64 get_mod() { return MOD; }
static void set_mod(u64 mod) {
MOD = mod;
T128 = -u128(mod) % mod;
INV_MOD = get_inv_mod();
}
// ニュートン法で逆元を求める
static u64 get_inv_mod() {
u64 res = MOD;
for(int i = 0; i < 5; ++i) res *= 2 - MOD * res;
return res;
}
static u64 MR(const u128& v) {
return (v + u128(u64(v) * u64(-INV_MOD)) * MOD) >> 64;
}
mint operator + () const { return mint(*this); }
mint operator - () const { return mint() - mint(*this); }
mint operator + (const mint& r) const { return mint(*this) += r; }
mint operator - (const mint& r) const { return mint(*this) -= r; }
mint operator * (const mint& r) const { return mint(*this) *= r; }
mint operator / (const mint& r) const { return mint(*this) /= r; }
mint& operator += (const mint& r) {
if((val += r.val) >= 2 * MOD) val -= 2 * MOD;
return *this;
}
mint& operator -= (const mint& r) {
if((val += 2 * MOD - r.val) >= 2 * MOD) val -= 2 * MOD;
return *this;
}
mint& operator *= (const mint& r) {
val = MR(u128(val) * r.val);
return *this;
}
mint& operator /= (const mint& r) {
*this *= r.inv();
return *this;
}
mint inv() const { return pow(MOD - 2); }
mint pow(u128 n) const {
mint res(1), mul(*this);
while(n > 0) {
if(n & 1) res *= mul;
mul *= mul;
n >>= 1;
}
return res;
}
bool operator == (const mint& r) const {
return (val >= MOD ? val - MOD : val) == (r.val >= MOD ? r.val - MOD : r.val);
}
bool operator != (const mint& r) const {
return (val >= MOD ? val - MOD : val) != (r.val >= MOD ? r.val - MOD : r.val);
}
friend istream& operator >> (istream& is, mint& x) {
long long t;
is >> t;
x = mint(t);
return is;
}
friend ostream& operator << (ostream& os, const mint& x) {
return os << x.get();
}
friend mint modpow(const mint& r, long long n) {
return r.pow(n);
}
friend mint modinv(const mint& r) {
return r.inv();
}
};
#line 2 "math/miller_rabin.hpp"
namespace fast_factorize {
using mint = MontgomeryModint64;
bool miller_rabin(long long N, vector<long long> A) {
mint::set_mod(N);
long long s = 0, d = N - 1;
while(!(d & 1)) {
s++;
d >>= 1;
}
for(long long a : A) {
if(N <= a) return true;
mint x = mint(a).pow(d);
if(x == 1) continue;
long long t;
for(t = 0; t < s; t++) {
if(x == N - 1) break;
x *= x;
}
if(t == s) return false;
}
return true;
}
bool is_prime(long long N) {
if(N <= 1) return false;
if(N == 2) return true;
if(!(N & 1)) return false;
if(N < 4759123141LL) return miller_rabin(N, {2, 7, 61});
return miller_rabin(N, {2, 325, 9375, 28178, 450775, 9780504, 1795265022});
}
} // namespace fast_factorize
#line 7 "verify/yosupo/yosupo_primality_test.test.cpp"
int main() {
int Q;
cin >> Q;
while(Q--) {
long long N;
cin >> N;
if(fast_factorize::is_prime(N)) cout << "Yes" << endl;
else cout << "No" << endl;
}
return 0;
}