This documentation is automatically generated by online-judge-tools/verification-helper
#include "math/fast_factorize.hpp"
#include "miller_rabin.hpp"
namespace fast_factorize {
long long find_prime_factor(long long N) {
if(!(N & 1)) return 2;
// GCDをまとめる数の上限
long long m = pow(N, 0.125) + 1;
for(int c = 1; c < N; c++) {
// 疑似乱数
auto f = [&](long long a) { return (__uint128_t(a) * a + c) % N; };
long long y = 0;
long long g = 1, q = 1; // g : GCD,q : |x - y|積
long long k = 0, r = 1; // k :
long long ys; // バックトラック用変数
long long x;
while(g == 1) {
x = y;
// k < 3r / 4の間はGCD計算を飛ばす
while(k < 3 * r / 4) {
y = f(y);
k++;
}
while(k < r && g == 1) {
// バックトラック用保存
ys = y;
for(int i = 0; i < min(m, r - k); i++) {
y = f(y);
q = __uint128_t(q) * abs(x - y) % N;
}
g = gcd(q, N);
k += m;
}
k = r;
r *= 2;
}
// まとめたgcdがNとなったら
if(g == N) {
g = 1;
y = ys;
while(g == 1) {
y = f(y);
g = gcd(abs(x - y), N);
}
}
// 失敗したら次のcへ
if(g == N) continue;
if(is_prime(g)) return g;
else if(is_prime(N / g)) return N / g;
else return find_prime_factor(g);
}
return -1;
}
vector<pair<long long, int>> factorize(long long N) {
vector<pair<long long, int>> ret;
while(!is_prime(N) && N > 1) {
long long p = find_prime_factor(N);
int e = 0;
while(N % p == 0) {
e++;
N /= p;
}
ret.push_back({p, e});
}
if(N != 1) ret.push_back({N, 1});
sort(ret.begin(), ret.end());
return ret;
}
} // namespace fast_factorize
#line 1 "data_structure/montgomery_modint_64.hpp"
struct MontgomeryModint64 {
using mint = MontgomeryModint64;
using u64 = uint64_t;
using u128 = __uint128_t;
static inline u64 MOD;
static inline u64 INV_MOD; // INV_MOD * MOD ≡ 1 (mod 2 ^ 64)
static inline u64 T128; // 2 ^ 128 (mod MOD)
u64 val;
MontgomeryModint64(): val(0) {}
MontgomeryModint64(long long v): val(MR((u128(v) + MOD) * T128)) {}
u64 get() const {
u64 res = MR(val);
return res >= MOD ? res - MOD : res;
}
static u64 get_mod() { return MOD; }
static void set_mod(u64 mod) {
MOD = mod;
T128 = -u128(mod) % mod;
INV_MOD = get_inv_mod();
}
// ニュートン法で逆元を求める
static u64 get_inv_mod() {
u64 res = MOD;
for(int i = 0; i < 5; ++i) res *= 2 - MOD * res;
return res;
}
static u64 MR(const u128& v) {
return (v + u128(u64(v) * u64(-INV_MOD)) * MOD) >> 64;
}
mint operator + () const { return mint(*this); }
mint operator - () const { return mint() - mint(*this); }
mint operator + (const mint& r) const { return mint(*this) += r; }
mint operator - (const mint& r) const { return mint(*this) -= r; }
mint operator * (const mint& r) const { return mint(*this) *= r; }
mint operator / (const mint& r) const { return mint(*this) /= r; }
mint& operator += (const mint& r) {
if((val += r.val) >= 2 * MOD) val -= 2 * MOD;
return *this;
}
mint& operator -= (const mint& r) {
if((val += 2 * MOD - r.val) >= 2 * MOD) val -= 2 * MOD;
return *this;
}
mint& operator *= (const mint& r) {
val = MR(u128(val) * r.val);
return *this;
}
mint& operator /= (const mint& r) {
*this *= r.inv();
return *this;
}
mint inv() const { return pow(MOD - 2); }
mint pow(u128 n) const {
mint res(1), mul(*this);
while(n > 0) {
if(n & 1) res *= mul;
mul *= mul;
n >>= 1;
}
return res;
}
bool operator == (const mint& r) const {
return (val >= MOD ? val - MOD : val) == (r.val >= MOD ? r.val - MOD : r.val);
}
bool operator != (const mint& r) const {
return (val >= MOD ? val - MOD : val) != (r.val >= MOD ? r.val - MOD : r.val);
}
friend istream& operator >> (istream& is, mint& x) {
long long t;
is >> t;
x = mint(t);
return is;
}
friend ostream& operator << (ostream& os, const mint& x) {
return os << x.get();
}
friend mint modpow(const mint& r, long long n) {
return r.pow(n);
}
friend mint modinv(const mint& r) {
return r.inv();
}
};
#line 2 "math/miller_rabin.hpp"
namespace fast_factorize {
using mint = MontgomeryModint64;
bool miller_rabin(long long N, vector<long long> A) {
mint::set_mod(N);
long long s = 0, d = N - 1;
while(!(d & 1)) {
s++;
d >>= 1;
}
for(long long a : A) {
if(N <= a) return true;
mint x = mint(a).pow(d);
if(x == 1) continue;
long long t;
for(t = 0; t < s; t++) {
if(x == N - 1) break;
x *= x;
}
if(t == s) return false;
}
return true;
}
bool is_prime(long long N) {
if(N <= 1) return false;
if(N == 2) return true;
if(!(N & 1)) return false;
if(N < 4759123141LL) return miller_rabin(N, {2, 7, 61});
return miller_rabin(N, {2, 325, 9375, 28178, 450775, 9780504, 1795265022});
}
} // namespace fast_factorize
#line 2 "math/fast_factorize.hpp"
namespace fast_factorize {
long long find_prime_factor(long long N) {
if(!(N & 1)) return 2;
// GCDをまとめる数の上限
long long m = pow(N, 0.125) + 1;
for(int c = 1; c < N; c++) {
// 疑似乱数
auto f = [&](long long a) { return (__uint128_t(a) * a + c) % N; };
long long y = 0;
long long g = 1, q = 1; // g : GCD,q : |x - y|積
long long k = 0, r = 1; // k :
long long ys; // バックトラック用変数
long long x;
while(g == 1) {
x = y;
// k < 3r / 4の間はGCD計算を飛ばす
while(k < 3 * r / 4) {
y = f(y);
k++;
}
while(k < r && g == 1) {
// バックトラック用保存
ys = y;
for(int i = 0; i < min(m, r - k); i++) {
y = f(y);
q = __uint128_t(q) * abs(x - y) % N;
}
g = gcd(q, N);
k += m;
}
k = r;
r *= 2;
}
// まとめたgcdがNとなったら
if(g == N) {
g = 1;
y = ys;
while(g == 1) {
y = f(y);
g = gcd(abs(x - y), N);
}
}
// 失敗したら次のcへ
if(g == N) continue;
if(is_prime(g)) return g;
else if(is_prime(N / g)) return N / g;
else return find_prime_factor(g);
}
return -1;
}
vector<pair<long long, int>> factorize(long long N) {
vector<pair<long long, int>> ret;
while(!is_prime(N) && N > 1) {
long long p = find_prime_factor(N);
int e = 0;
while(N % p == 0) {
e++;
N /= p;
}
ret.push_back({p, e});
}
if(N != 1) ret.push_back({N, 1});
sort(ret.begin(), ret.end());
return ret;
}
} // namespace fast_factorize