This documentation is automatically generated by online-judge-tools/verification-helper
#include "math/crt.hpp"
中国剰余定理
x ≡ b1 mod m1, x ≡ b2 mod m2をみたすxがx ≡ r mod mと書けるとき,
(r, m)を返す,解がなければ(0, -1)を返す
x ≡ bi (mod mi) を満たすlong long型のvector b, mを入力.
long long型のr, mを返す.
x ≡ b1 mod m1, x ≡ b2 mod m2をみたすx ≡ r mod mが存在するには,
b1 ≡ b2 mod gcd(m1, m2)が必要
d = gcd(m1, m2)とおくと,m1p + m2q = dを満たす(p, q)が構成できる
b1 ≡ b2 mod dより,b2 - b1はdで割り切れる.
s = (b2 - b1) / dとおくと,sm1p + sm2q = b2 - b1となる.
式変形し,b1 + sm1p = b2 - sm2qとし,左辺をxとおくと,
x ≡ b1 mod m1, x ≡ b2 mod m2を満たす.
#include "ext_gcd.hpp"
inline long long safe_mod(long long a, long long m) {
return (a % m + m) % m;
}
pair<long long, long long> crt(const vector<long long>& b, const vector<long long>& m) {
assert(b.size() == m.size());
long long r = 0, M = 1;
for(int i = 0; i < (int)b.size(); i++) {
auto [d, p, q] = ext_gcd(M, m[i]);
if((b[i] - r) % d != 0) return {0, -1};
long long tmp = (b[i] - r) / d * p % (m[i] / d);
r += M * tmp;
M *= m[i] / d;
}
r = safe_mod(r, M);
return {r, M};
}
#line 1 "math/ext_gcd.hpp"
tuple<long long, long long, long long> ext_gcd(long long a, long long b) {
if(b == 0) return {a, 1, 0};
auto [d, y, x] = ext_gcd(b, a % b);
y -= a / b * x;
return {d, x, y};
}
#line 2 "math/crt.hpp"
inline long long safe_mod(long long a, long long m) {
return (a % m + m) % m;
}
pair<long long, long long> crt(const vector<long long>& b, const vector<long long>& m) {
assert(b.size() == m.size());
long long r = 0, M = 1;
for(int i = 0; i < (int)b.size(); i++) {
auto [d, p, q] = ext_gcd(M, m[i]);
if((b[i] - r) % d != 0) return {0, -1};
long long tmp = (b[i] - r) / d * p % (m[i] / d);
r += M * tmp;
M *= m[i] / d;
}
r = safe_mod(r, M);
return {r, M};
}