This documentation is automatically generated by online-judge-tools/verification-helper
#include "flow/ford_fulkerson.hpp"
template<typename flow_t>
struct FordFulkerson{
struct Edge{
int from, to, rev;
flow_t cap;
bool is_rev;
Edge(int f, int t, int r, flow_t c, bool b) : from(f), to(t), rev(r), cap(c), is_rev(b) {}
};
vector<vector<Edge>> G;
vector<bool> used;
const flow_t INF = numeric_limits<flow_t>::max();
FordFulkerson(int N) : G(N), used(N, false) {}
void add_edge(int from, int to, flow_t cap) {
int fromrev = G[from].size();
int torev = G[to].size();
G[from].push_back(Edge(from, to, torev, cap, 0));
G[to].push_back(Edge(to, from, fromrev, 0, 1));
}
flow_t dfs(int v, int t, flow_t f) {
if(v == t) return f;
used[v] = true;
for(Edge& e : G[v]) {
if(used[e.to]) continue;
if(e.cap == 0) continue;
flow_t flow = dfs(e.to, t, min(f, e.cap));
if(flow == 0) continue;
e.cap -= flow;
G[e.to][e.rev].cap += flow;
return flow;
}
return 0;
}
flow_t max_flow(int s, int t) {
flow_t ret = 0;
while(true) {
used.assign(G.size(), false);
flow_t flow = dfs(s, t, INF);
if(flow == 0) break;
ret += flow;
}
return ret;
}
vector<Edge> edges() {
vector<Edge> ret;
for(const auto& v : G) {
for(const auto& e : v) {
if(e.is_rev) continue;
ret.push_back(e);
}
}
return ret;
}
void debug() {
for(const auto& v : G) {
for(const auto& e : v) {
if(e.is_rev) continue;
cout << e.from << " -> " << e.to << " (flow : " << G[e.to][e.rev].cap << " / "
<< e.cap + G[e.to][e.rev].cap << ")" << endl;
}
}
}
};
#line 1 "flow/ford_fulkerson.hpp"
template<typename flow_t>
struct FordFulkerson{
struct Edge{
int from, to, rev;
flow_t cap;
bool is_rev;
Edge(int f, int t, int r, flow_t c, bool b) : from(f), to(t), rev(r), cap(c), is_rev(b) {}
};
vector<vector<Edge>> G;
vector<bool> used;
const flow_t INF = numeric_limits<flow_t>::max();
FordFulkerson(int N) : G(N), used(N, false) {}
void add_edge(int from, int to, flow_t cap) {
int fromrev = G[from].size();
int torev = G[to].size();
G[from].push_back(Edge(from, to, torev, cap, 0));
G[to].push_back(Edge(to, from, fromrev, 0, 1));
}
flow_t dfs(int v, int t, flow_t f) {
if(v == t) return f;
used[v] = true;
for(Edge& e : G[v]) {
if(used[e.to]) continue;
if(e.cap == 0) continue;
flow_t flow = dfs(e.to, t, min(f, e.cap));
if(flow == 0) continue;
e.cap -= flow;
G[e.to][e.rev].cap += flow;
return flow;
}
return 0;
}
flow_t max_flow(int s, int t) {
flow_t ret = 0;
while(true) {
used.assign(G.size(), false);
flow_t flow = dfs(s, t, INF);
if(flow == 0) break;
ret += flow;
}
return ret;
}
vector<Edge> edges() {
vector<Edge> ret;
for(const auto& v : G) {
for(const auto& e : v) {
if(e.is_rev) continue;
ret.push_back(e);
}
}
return ret;
}
void debug() {
for(const auto& v : G) {
for(const auto& e : v) {
if(e.is_rev) continue;
cout << e.from << " -> " << e.to << " (flow : " << G[e.to][e.rev].cap << " / "
<< e.cap + G[e.to][e.rev].cap << ")" << endl;
}
}
}
};