This documentation is automatically generated by online-judge-tools/verification-helper
#include "data_structure/lazy_segmemt_tree.hpp"
template<class S, S (*op)(S, S), S (*e)(), class F, S (*mapping)(F, S), F (*composition)(F, F), F (*id)()>
struct LazySegmentTree{
int n, log;
vector<S> data;
vector<F> lazy;
LazySegmentTree(int n) : LazySegmentTree(vector<S>(n, e())) {}
LazySegmentTree(const vector<S> &v) {
int sz = v.size();
n = 1;
log = 0;
while(n < sz) {
n <<= 1;
log++;
}
data.resize(2 * n, e());
lazy.resize(2 * n, id());
for(int i = 0; i < sz; i++) data[i + n] = v[i];
for(int i = n; --i;) data[i] = op(data[i << 1], data[i << 1 | 1]);
}
S prod(int l, int r) {
if(l == r) return e();
l += n; r += n;
for(int i = log; i >= 1; i--) {
if(((l >> i) << i) != l) push(l >> i);
if(((r >> i) << i) != r) push(r >> i);
}
S vl = e(), vr = e();
while(l < r) {
if(l & 1) vl = op(vl, data[l++]);
if(r & 1) vr = op(data[--r], vr);
l >>= 1; r >>= 1;
}
return op(vl, vr);
}
void apply(int l, int r, F f) {
if(l == r) return;
l += n; r += n;
for(int i = log; i >= 1; i--) {
if(((l >> i) << i) != l) push(l >> i);
if(((r >> i) << i) != r) push((r - 1) >> i);
}
{
int l2 = l, r2 = r;
while(l < r) {
if(l & 1) all_apply(l++, f);
if(r & 1) all_apply(--r, f);
l >>= 1;
r >>= 1;
}
l = l2; r = r2;
}
for(int i = 1; i <= log; i++) {
if(((l >> i) << i) != l) update(l >> i);
if(((r >> i) << i) != r) update((r - 1) >> i);
}
}
inline void update(int k) { data[k] = op(data[k << 1], data[k << 1 | 1]); }
inline void all_apply(int k, F f) {
data[k] = mapping(f, data[k]);
if(k < n) lazy[k] = composition(f, lazy[k]);
}
inline void push(int k) {
all_apply(k << 1, lazy[k]);
all_apply(k << 1 | 1, lazy[k]);
lazy[k] = id();
}
};
#line 1 "data_structure/lazy_segmemt_tree.hpp"
template<class S, S (*op)(S, S), S (*e)(), class F, S (*mapping)(F, S), F (*composition)(F, F), F (*id)()>
struct LazySegmentTree{
int n, log;
vector<S> data;
vector<F> lazy;
LazySegmentTree(int n) : LazySegmentTree(vector<S>(n, e())) {}
LazySegmentTree(const vector<S> &v) {
int sz = v.size();
n = 1;
log = 0;
while(n < sz) {
n <<= 1;
log++;
}
data.resize(2 * n, e());
lazy.resize(2 * n, id());
for(int i = 0; i < sz; i++) data[i + n] = v[i];
for(int i = n; --i;) data[i] = op(data[i << 1], data[i << 1 | 1]);
}
S prod(int l, int r) {
if(l == r) return e();
l += n; r += n;
for(int i = log; i >= 1; i--) {
if(((l >> i) << i) != l) push(l >> i);
if(((r >> i) << i) != r) push(r >> i);
}
S vl = e(), vr = e();
while(l < r) {
if(l & 1) vl = op(vl, data[l++]);
if(r & 1) vr = op(data[--r], vr);
l >>= 1; r >>= 1;
}
return op(vl, vr);
}
void apply(int l, int r, F f) {
if(l == r) return;
l += n; r += n;
for(int i = log; i >= 1; i--) {
if(((l >> i) << i) != l) push(l >> i);
if(((r >> i) << i) != r) push((r - 1) >> i);
}
{
int l2 = l, r2 = r;
while(l < r) {
if(l & 1) all_apply(l++, f);
if(r & 1) all_apply(--r, f);
l >>= 1;
r >>= 1;
}
l = l2; r = r2;
}
for(int i = 1; i <= log; i++) {
if(((l >> i) << i) != l) update(l >> i);
if(((r >> i) << i) != r) update((r - 1) >> i);
}
}
inline void update(int k) { data[k] = op(data[k << 1], data[k << 1 | 1]); }
inline void all_apply(int k, F f) {
data[k] = mapping(f, data[k]);
if(k < n) lazy[k] = composition(f, lazy[k]);
}
inline void push(int k) {
all_apply(k << 1, lazy[k]);
all_apply(k << 1 | 1, lazy[k]);
lazy[k] = id();
}
};